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Abstract—Spiking neural networks (SNN) are regarded by
many as the “third generation network” that will solve com-
putation problems in a more biologically realistic way. In our
project, we design a robotic platform controlled by a user-defined
SNN in order to develop a next generation artificial intelligence
robot with high flexibility. This paper describes the preliminary
progress of the project. We first implement a basic simple decision
network and the robot is able to perform a basic but vital foraging
and risk-avoiding task. Next, we implement the neural network
of the fruit fly central complex in order to endow the robot with
spatial orientation memory, a crucial function underlying the
ability of spatial navigation.
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I. INTRODUCTION

In recent years, researchers and engineers in the field of
robotic navigation have tried to realize SLAM (simultaneous
localization and mapping) through various algorithms, opti-
mization, modeling, or machine learning [1], [2]. However,
most of the methods are computationally demanding and it is
rather challenging to apply them in the low-powered mobile
devices.

In contrast, biology-inspired spiking neural networks (SNN)
provide a more efficient and flexible solution to many com-
putation problems [3]. Several teams have started to develop
robots that are controlled by SNN [4], [5]. In the present study,
we build a robot platform that can flexibly implement any user-
defined SNN, including those observed in small insects such
as flies.

We start with the most basic innate behavior, foraging and
risk-avoiding, by building a simple decision network. Next, we
implement the central complex networks of fruit flies in the
robot. The networks endow the robot with spatial orientation
memory, allowing it to navigate even without the sensory
input.

II. METHODS

We construct a simple robotic car - “FlyintelBot” (Fig. 1a)
that can receive and respond to environmental stimuli. The
system consists of the following components:
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(a) Side view of the FlyintelBot.
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(b) Overall architecture of the FlyintelBot.

Fig. 1. Flyintel simulates user-defined SNNs and interact with the real world.

A. Spiking Neural Network Model

For demonstration purposes, we implement a simple deci-
sion network model, which consists of 18 populations of neu-
rons only (Fig. 2). There are three sensory neurons receiving
visual stimuli and propagating the spikes to the downstream
premotor neurons, and the premotor neurons immediately
stimulate the corresponding motor neurons to achieve target-
chasing. On the other hand, three risk-detecting sensory neu-
rons, which receive distance-to-obstacle data from distance-
measuring sensors, counteract the premotor neurons. More-
over, to improve the robustness of the motor output, a global
inhibition neuron which shuts down other weakly activated
neurons is required. The platform is highly flexible and we
can easily edit the network parameters and configuration. The
whole SNN is simulated on Flysim simulator [6], a light-
weight and efficient SNN simulator developed in-house.

B. Hardware

The “brain” of the FlyintelBot system is a Raspberry Pi 3
single-board computer. The neural network simulator, commu-
nication interface and the SNN are all built on it (Fig. 1b).
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Fig. 2. The decision-making network implemented in Flyintel. “fS”stands for
a foraging sensory neuron, “rS” stands for a risk-detecting sensory neuron,
“M” stands for a motor neuron, “Pm” represents a premotor neuron and “Inh”
is an inhibition neuron.

The input data are from the CMUcam5 Pixy vision sensor,
which is able to learn and recognize multiple specific colored
objects at the same time [7] and 3 distance-measuring sensors.
The motor commands are executed by 4 DC motors.

C. Communication Interface

The input data from the sensors cannot be read directly by
the SNN, which requires spike inputs. Therefore, we design
a communication interface which encodes the data into spike
trains as the inputs for the sensory neurons. A similar issue
occurs for the SNN output as well. The outputs of the SNN
are spike trains, and the interface also needs to decode them
into motor operation commands, i.e., voltage.

III. RESULTS AND DISCUSSION

FlyintelBot is highly adaptive to different types of envi-
ronments it is trained for, since the vision sensor only picks
up the colors we taught. The foraging and risk-avoiding task
work fairly well, and all the processes are totally autonomous.
In addition to the simple decision network, we are also in
the process of implementing a more complex and powerful
network model inspired by Drosophila (fruit fly) brain, which
is one of the most intensively studied species in brain science,
onto FlyintelBot.

In primates, the most famous navigation system is the grid
cell and place cell network [8], however there is no report
on a similar system in a Drosophila brain. Nevertheless, a
Drosophila central complex model was proposed (Fig. 3a) to
explain how a fruit fly remembers the orientation of the target
relative to itself [9]. Hence, we are implementing the model
on FlyintelBot. We have already simulated the model on the
computer, and the result shows that the model can maintain
spatial orientation even after the landmarks disappear (Fig. 3b).
This approach may lead to a biologically realistic and power-
efficient SLAM technique if the SNN models are implemented
in neuromorphic chips in the future.
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(a) The simplified model of Drosophila
central complex depicts a three-ringed
model.

(b) The simulation result of the central complex model.
Left: When the fly faces the same direction all the time,
the bump is fixed. Right: When the fly rotates counterclock-
wise, the bump rotates clockwise to update the memory of
the target direction.

Fig. 3. A Drosophila brain stdudy suggests a model that the ring structures
inside the central complex play an important role in spatial memory and
navigation.
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